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Abstract

We aim to design classifiers that have the interpretability of association rules yet
have predictive power on par with the top machine learning algorithms for classi-
fication. We propose a novel mixed integer optimization (MIO) approach called
Ordered Rules for Classification (ORC) for this task. Our method has two parts.
The first part mines a particular frontier of solutions in thespace of rules, and we
show that this frontier contains the best rules according toa variety of interesting-
ness measures. The second part learns an optimal ranking forthe rules to build a
decision list classifier that is simple and insightful. We report empirical evidence
using several different datasets to demonstrate the performance of this method.1 2

1 Introduction

Our goal in this work is to develop classification models thatare on par in terms of accuracy with the
top classification algorithms, yet are interpretable, or easily understood, by humans. This work thus
addresses a dichotomy in the current state-of-the-art for classification: On the one hand, algorithms
such as support vector machines (SVM) [1] are highly accurate but not interpretable; for instance,
trying to explain a support vector kernel to a medical doctoris not likely to persuade him or her to
use an SVM-based diagnostic system. On the other hand, algorithms such as decision trees [2, 3] are
interpretable, but not specifically optimized to achieve the highest in-sample accuracy. Our models
are both interpretable and directly optimized for accuracy, and can be used for applications in which
the user needs accurate predictions as well as an understanding of how the predictions are made.

Our models are designed to be interpretable from multiple perspectives. First, the models are de-
signed to beconvincing: for each prediction, the model also provides the reasons for why this
particular prediction was made, highlighting exactly which data were used to make that prediction.
To achieve this, we use association rules to build the modelsinto a type of decision list, that is, a
rank ordered set of rules supported by data. The second way our models are interpretable involves
their size: these models are designed to beconcise. Specifically, our formulations include two types
of regularization. The first encourages rules to have small left-hand-sides, so that the reasons given
for each prediction are as sparse as possible. The second encourages the decision list to be shorter;
the regularization term is the number of rules in the decision list, which is another form of spar-
sity regularization. There is no single correct way to measure interpretability, as it is necessarily
subjective. Nevertheless, psychologists have long studied human ability to process data, and have
shown that humans can simultaneously process only a handfulof cognitive entities, and are able
to estimate relatedness of only a few variables [e.g., 4, 5].We aim in this work to achieve a con-
vincing and concise model that captures relationships between variables, which limits the reasoning

1The authorship sequence is alphabetical.
2This work was supported by NSF Grant IIS-1053407.
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required by humans to understand and believe its predictions. These models allow predictions to be
communicated in words, rather than in equations.

The accuracy of our algorithm results from the use of mixed integer optimization (MIO). Rule learn-
ing problems suffer from combinatorial explosion, in termsof both searching through a database for
rules and managing a massive pile of potentially interesting rules. A dataset with even a modest
number of items can contain thousands of rules, thus making it difficult to find useful ones. More-
over, for a set ofL rules, there areL! ways to order them into a decision list. On the other hand,
MIO solvers are designedpreciselyto handle combinatorial problems. There has been tremendous
progress in MIO hardware and software over the last two decades, and we can now solve large-scale
MIO formulations that were impossible only a few years ago. On the other hand, designing an MIO
problem is more challenging than designing a linear optimization problem. Our ability to solve an
MIO problem depends critically on the strength of the formulation, which is related to the geometry
of the set of feasible solutions. In this work, we create MIO formulations for both the problem
of mining rules and the problem of learning to rank them, and our experiments show predictive
accuracy on a collection of datasets at approximately the same level as some of the top current al-
gorithms in machine learning, including support vector machines with Gaussian kernels, C4.5, and
boosted decision trees. This shows that one does not necessarily need to sacrifice accuracy to obtain
interpretability, as long as one is willing to take more timeto generate a better solution.

In Section 2, we discuss related work. In Section 3, we state our notation and derive an MIO for-
mulation for association rule mining. In Section 4, we present an MIO learning algorithm that uses
rules to build a classifier. Sections 5 and 6 demonstrate the accuracy and interpretability respectively
of our classifiers. We conclude in Section 7. Note that this paper highlights our key ideas and results,
but we include additional information in a longer version ofthe paper [6], including: an extended
related work section, a more general MIO formulation for rule generation, supplementary details
about our experiments, and additional examples of interpretability.

2 Related Work

Association rule mining was first introduced by Agrawal et al. [7] for market-basket analysis, where
the goal was to discover sets of items that were often purchased together. Since the introduction
of the Apriori method [8], various algorithms for rule mining have applied heuristic techniques to
traverse the search space of possible rules [9]. Though association rules were originally designed
for data exploration,associative classificationlater developed as a framework to use the rules for
classification, with algorithms such as CBA, CMAR, and CPAR [10, 11, 12], just to name a few.
Methods to build a classifier using a sorted set of association rules fall into two categories: those that
predict based on multiple rules, and those that predict based on the highest applicable rule in a ranked
list of rules. The first category uses more information by classifying based on a sort of majority vote
of applicable rules, but in general has two major disadvantages: first, it ignores the dependency
between rules, so two rules that are almost exactly the same have two separate votes instead of one;
and second, the model loses interpretability by combining rules together. Models that combine the
votes of various rules are similar to the Logical Analysis ofData (LAD) model [13]. The second
category of sorted-rule-based classification algorithms produces decision lists [14]. These classifiers
are simple to understand and use the highest ranked rules forprediction. However, if the list is not
properly ordered, it may not yield an accurate classifier. Decision lists can be created by ordering
rules according to an interestingness measure. Alternatively, the ordering of rules can be learned
from data, which is the approach we take here. Further related work is presented in [6].

3 Mining Optimal Association Rules

In this section, we describe an MIO method to generate rules for the purpose of binary classification.
(The method can be trivially extended to multi-class classification.) We use the following standard
notation: letI = {1, . . . , d} be a set of items, andX ⊆ I be an itemset. LetD be a database
of itemsets. Each itemset or row in the database is called a transaction, and each transaction has a
class attribute in{−1, 1}. For example, the transactions might be medical patients, the items might
be various possible symptoms, and the two classes might be “disease 1” and “disease 2.” We want
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Table 1: The bodyX of the rule is in transactioni since (1) and (2) are satisfied.
j

1 2 3 4 5
ti (1 if item j in transactioni) 1 0 1 1 0
b (1 if item j in body of rule) 1 0 0 1 0

Table 2: Interestingness measures.
Measure Definition Measure Definition

Confidence/Precision s
sX

Conviction 1−sY
1−s/sX

Recall s
sY

Laplace Correction ns+1
nsX+k

, k is number of classes
Accuracy 1− sX − sY + 2s Piatetsky-Shapiro s− sXsY
Lift/Interest s

sXsY

to find association rules of the formX ⇒ −1 or X ⇒ 1; the first rule means that a transaction
containingX is in class−1, and the second means that a transaction containingX is in class 1.

Let there ben transactions in the databaseD, and letti ∈ {0, 1}d represent transactioni. In
particular,tij = 1[transactioni includes itemj] for 1 ≤ i ≤ n and1 ≤ j ≤ d. Note that theti are data
rather than decision variables in the optimization problem.

There are two sets of decision variables. First, letb ∈ {0, 1}d represent the bodyX of a rule:
bj = 1[j∈X] for j = 1, . . . , d. Second, letxi = 1[transactioni includesX] for i = 1, . . . , n. Let ed be the
d-vector of ones. Each point in the spaceP defined by the following constraints corresponds to the
bodyX of a rule (takeX = {j : bj = 1} to obtainX from a feasibleb):

xi ≤ 1 + (tij − 1)bj, ∀i, j, (1)

xi ≥ 1 + (ti − ed)
T b, ∀i, (2)

bj ∈ {0, 1}, ∀j, (3)

0 ≤ xi ≤ 1, ∀i. (4)

To understand (1), consider the two casesbj = 0 andbj = 1. If bj = 0, then the constraint is just
xi ≤ 1, so the constraint has no effect. Ifbj = 1, then the constraint isxi ≤ tij . That is, ifbj = 1
(item j is in X) but tij = 0 (item j is not in transactioni), thenxi = 0. This set of constraints
implies thatxi = 0 if transactioni does not includeX . We need (2) to enforcexi = 1 if transaction
i includesX . Note thattTi b is the number of items in the intersection of transactioni andX , andeTd b
is the number of items inX . This constraint is valid becausetTi b =

∑d

j=1 tijbj ≤
∑d

j=1 bj = eTd b,
where equality holds if and only if transactioni includesX and otherwisetTi b ≤ eTd b − 1. Table 1
helps to clarify (1) and (2).

The spaceP defined by (1) through (4) hasd binary variables,n continuous variables, andnd + n
constraints. Here we explain why we do not need an explicit integrality constraint on thexi variables,
that is, why we have (4) instead ofxi ∈ {0, 1} for all i. There are two cases when deciding whether
X is in transactioni. If it is, then (2) saysxi ≥ 1, which impliesxi = 1. If it is not, then there exists
j such thattij = 0 andbj = 1, so (1) saysxi ≤ 0 for somej, which impliesxi = 0. Thus in either
case,xi is forced to be an integer, regardless of whether we specify it as an integer variable. Having
fewer integer variables generally helps speed up computation.

Our algorithm outputs one rule at a time, for a specified classattribute. Lety ∈ {−1, 1} be the class
for which we are mining rules, and letS = {i : transactioni has class labely}. Also, let

sX =
1

n

n
∑

i=1

xi, sY =
1

n
|S|, s =

1

n

∑

i∈S

xi,

calledcoverage, prevalence, andsupportrespectively. Note that all rules for a given class have the
samesY . We can capture other interestingness measures usingsX , sY , ands, some of which are
listed in Table 2.

Many interestingness measures, including those in Table 2,increase with decreasingsX (holding
s constant) and increasings (holding sX constant). Thus the rules that optimize each of these
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measures fall along an efficient frontier of rules with maximal s and minimalsX . We can find each
rule on the frontier by putting an upper bound onsX and maximizings. Formulation (5) maximizes
the “scaled support” (n · s) for a certain choice of̄sX , wheres̄X denotes the user-specified upper
bound on the “scaled coverage” (n · sX ). We vary the upper bound over all possible values from
largest to smallest to produce the entire frontier (from right to left).

max
b,x

∑

i∈S

xi −Rgenx

n
∑

i=1

xi −Rgenb

d
∑

j=1

bj (5)

s.t.
n
∑

i=1

xi ≤ s̄X ,

(b, x) ∈ P . (defined in (1), (2), (3), (4))

The first term in the objective is the scaled support. The second term corresponds to the coverage
sX ; if there are multiple rules with optimal support, we want those with smaller coverage. The third
term is a regularization term, and corresponds to the sparsity of the rule; if there are multiple rules
that maximizes and have equalsX , we want those with smaller bodies, that is, more zeros inb. The
parametersRgenx andRgenb control the weight of these terms in the objective, where theformer
ensures that we properly trace out the frontier, and the latter could potentially trade-off sparsity for
closeness to the frontier.

Solving (5) once for each possible value ofs̄X does not yield the entire frontier since there may
be multiple optimal rules at each point on the frontier. To find other optima, we add constraints
making each solution found so far infeasible, so that they cannot be found again when we re-solve.
Specifically, we iteratively solve the formulation as follows: Let b∗ be the first optimum we find
for (5). We add the constraint

∑

j:b∗
j
=0

bj +
∑

j:b∗
j
=1

(1 − bj) ≥ 1 (6)

to the formulation. This constraint says that in the vectorb, at least one of the components must be
different from in the previous solution; that is, at least one of the zeros must be a one or one of the
ones must be a zero. Then we solve again. If we find another optimum, then we repeat the step above
to generate another constraint and re-solve. If the optimalvalue of

∑

i∈S xi decreases, then we set
the upper bound on̄sX to a new value and iterate again. This new value is the minimumof

∑n

i=1 xi

ands̄X − 1 (previous bound minus one); we know that no rule on the remainder of the frontier has
scaled coverage greater than

∑n
i=1 xi, so using this as the bound provides a tighter constraint than

usings̄X − 1 whenever
∑n

i=1 xi < s̄X − 1. Using a similar method, we could also find a band of
rules below the frontier if we wanted to expand our set of rules.

The rule generation algorithm, called “RuleGen” is summarized in Figure 1. This algorithm al-
lows optional minimum coverage thresholdsmincov−1 andmincov1 to be imposed on each of
the classes of rules. Also,iter lim limits the number of times we iterate the procedure above
with adding (6) between iterates for a fixed value ofsX . To find all rules on the frontiers, set
mincov−1 = mincov1 = 0 anditer lim = ∞. Figure 2 illustrates the steps of the algorithm.

In [6], we present a formulation for mining general association rules of the formX ⇒ Y , whereY
can be any itemset that is disjoint withX , instead of a class attribute.

4 Building a Classifier

Suppose we have generatedL rules, where each ruleℓ is of the formXℓ ⇒ −1 orXℓ ⇒ 1. Our task
is now to rank them into a decision list for classification. Again for ease of exposition, we consider
binary classification, though the method extends to multi-class problems. Given a new transaction,
the decision list classifies it according to the highest ranked ruleℓ such thatXℓ is in the transaction,
or the highest rule that “applies” to the transaction. In this section, we derive an empirical risk
minimization algorithm using MIO that yields an optimal ranking of rules. That is, the ranking
returned by our algorithm optimizes the (regularized) classification accuracy on a training sample.

We always include in the set of rules to be ranked two “null rules:”∅ ⇒ −1, which predicts class−1
for any transaction, and∅ ⇒ 1, which predicts class 1 for any transaction. In the final ranking, the
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Input: mincov−1, mincov1, iter lim

for Y in {-1,1} do
Initialize s̄X ← n, iter← 1, s̄← 0

Initialize collection of rule bodiesRY = ∅
repeat

if iter = 1 then
Solve (5) to obtain ruleX ⇒ Y
s̄←

∑

i∈S xi

iter← iter + 1
end if
RY ←RY ∪X
Add new constraint (6)
if iter≤ iter lim then

Solve (5) to obtain ruleX ⇒ Y
if
∑

i∈S xi < s̄ then
s̄X ← min

(
∑n

i=1 xi, s̄X − 1
)

iter← 1
else

iter← iter + 1
end if

else
s̄X ← s̄X − 1

iter← 1
end if

until s̄X < n · mincovY
end for

Figure 1: RuleGen Algorithm.

Figure 2: Decrease upper bound (dashed vertical line)
starting froms̄X = n to generate the frontier, one point
at a time, from right to left.

Parameters:

piℓ =











1 if rule ℓ correctly classifies transactioni,
−1 if rule ℓ incorrectly classifies transactioni,
0 if rule ℓ does not apply to transactioni,

viℓ = 1[ruleℓ applies to transactioni] = |piℓ|,
Rrank = regularization parameter

Variables:
rℓ = rank of ruleℓ,
r∗ = rank of higher null rule,
uiℓ = 1[ruleℓ is the rule that predicts the class of transactioni]

Figure 3: Parameters and decision variables.

higher of the null rules corresponds effectively to the bottom of the ranked list of rules; all examples
that reach this rule are classified by it, thus the class it predicts is the default class. We include both
null rules in the set of rules because we do not know which of them would serve as the better default,
that is, which would help the decision list to achieve the highest possible classification accuracy; our
algorithm learns which null rule to rank higher.

Figure 3 shows the parameters and decision variables of the formulation we derive here to rank a list
of rules. Therℓ variables store the ranks of the rules;r∗ is the rank of the default rule, which we
want to be high for conciseness. Theuiℓ variables help capture the mechanism of the decision list,
enforcing that only the highest applicable rule predicts the class of a transaction: for transactioni,
uiℓ = 0 for all except one rule, which is the one, among those that apply, with the highest rankrℓ.
The formulation we designed to build the optimal classifier is:

max
r,r∗,g,u,s,α,β

n
∑

i=1

L
∑

ℓ=1

piℓuiℓ +Rrankr∗ (7)

s.t.
L
∑

ℓ=1

uiℓ = 1, ∀i, (8)

gi ≥ viℓrℓ, ∀i, ℓ, (9)

gi ≤ viℓrℓ + L(1− uiℓ), ∀i, ℓ, (10)

uiℓ ≥ 1− gi + viℓrℓ, ∀i, ℓ, (11)

uiℓ ≤ viℓ, ∀i, ℓ, (12)
L
∑

k=1

sℓk = 1, ∀ℓ, (13)

L
∑

ℓ=1

sℓk = 1, ∀k, (14)

rℓ =

L
∑

k=1

ksℓk, ∀ℓ, (15)

r∗ ≥ rA, (16)

r∗ ≥ rB , (17)

r∗ − rA ≤ (L− 1)α, (18)

rA − r∗ ≤ (L− 1)α, (19)

r∗ − rB ≤ (L− 1)β, (20)

rB − r∗ ≤ (L− 1)β, (21)

α+ β = 1, (22)

uiℓ ≤ 1−
r∗ − rℓ

L− 1
, ∀i, ℓ, (23)

α, uiℓ, sℓk ∈ {0, 1}, ∀i, ℓ, k,

0 ≤ β ≤ 1,

rℓ ∈ {1, 2, . . . , L}, ∀ℓ.
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We use (7) to refer to the entire MIO formulation and not just the objective function. The first term
in the objective corresponds to classification accuracy. Given an ordering of rules, the quantityci =
∑L

ℓ=1 piℓuiℓ equals 1 if the resulting decision list correctly predicts the class of transactioni and
−1 otherwise. Thus, the number of correct classifications is

∑n

i=1

(

ci+1
2

)

= 1
2 (n+

∑n

i=1 ci). So

to maximize classification accuracy, it suffices to maximize
∑n

i=1 ci =
∑n

i=1

∑L

ℓ=1 piℓuiℓ. Table 3
shows an example of the parameters (piℓ) and variables (rℓ, uiℓ) for a particular ranking of rules and
transaction to be classified. We note that since this algorithm directly optimizes the 0-1 classification
error, it has the property of being robust to outliers.

Table 3: Transactionti is represented by{1 0 1 1 0}, and its class is−1. The highest rule that
applies is the one ranked 8th (rℓ = 8) since{1 0 1 0 0}⊂{1 0 1 1 0} (the rules ranked 10th and
9th do not apply). Thusuiℓ = 1 for this rule. This rule haspiℓ = 1 since the rule applies toti and
correctly predicts−1, so the contribution of transactioni to the accuracy part of the objective in (7)
is
∑L

ℓ=1 piℓuiℓ = 1.
Transactionti: {1 0 1 1 0}, class=−1
Ranked rules piℓ rℓ uiℓ

{0 1 0 0 1} ⇒ −1 0 10 0
{0 1 1 0 0} ⇒ 1 0 9 0
{1 0 1 0 0} ⇒ −1 1 8 1
{1 0 0 0 1} ⇒ −1 0 7 0
{0 0 0 0 0} ⇒ 1 −1 6 0

...
...

...
...

{0 0 1 1 0} ⇒ −1 1 1 0

Constraint (8) enforces that for eachi, only one of theuiℓ variables equals one while the rest are
zero. To capture the definition ofuiℓ, we use an auxiliary variablegi, which represents the rank
of the highest applicable rule for transactioni. Through (9) and (10), there is only oneℓ such that
uiℓ = 1 is feasible, namely theℓ corresponding to the highest value ofviℓrℓ. Constraints (11)
and (12) are not necessary but help improve the linear relaxation and thus are intended to speed up
computation. We assign the integral ranksrℓ using (13) through (15), which implysℓk = 1 if rule ℓ
is assigned to rankk. The matching between ranks and rules is one-to-one.

We add a new type of regularization to favor a shorter overalllist of rules by pulling the rank of the
higher null rule as high as possible. IfrA is the rank of∅ ⇒ −1 andrB is the rank of∅ ⇒ 1, then
we addr∗ to the objective function, wherer∗ is the maximum ofrA andrB. The regularization
coefficient ofr∗ in the objective isRrank. We capturer∗ using (16) through (22): Eitherα = 1 and
β = 0, or elseβ = 1 andα = 0. If α = 1, thenr∗ = rB . If β = 1, thenr∗ = rA. Since we are
maximizingr∗, we knowr∗ equals the higher ofrA andrB. Note that ifα is binary, thenβ need
not be binary because the constraintα + β = 1 forces integral values forβ. If the rankrℓ of rule ℓ
is belowr∗, thenuiℓ = 0 for all i, so (23) is valid, and we include it to help speed up computation.

The Ordered Rules for Classification (ORC) algorithm consists of generating rules using RuleGen,
computing thepiℓ andviℓ, and then solving the formulation in (7). Note that RuleGen and (7) can
be used independently of each other if one desires to use the rules for a different purpose, or to use
a set of already established rules to construct the decisionlist.

5 Computational Results

We used a number of publicly available datasets to demonstrate the performance of our approach.
Crime1 and Crime2 are derived from a study funded by the US Department of Justice [15]. Titanic
is from a report on the sinking of the “Titanic” [16]. All others are from the UCI Machine Learning
Repository [17]. For each dataset, we divided the data evenly into three folds and used each fold
in turn as a test set, training each time with the other two folds. The training and test accuracy
were averaged over these three folds. We compared the ORC algorithm with six other classification
methods—logistic regression, Support Vector Machines (SVM) [1], Classification and Regression
Trees (CART) [2], C4.5 [3] (J48 implementation), Random Forests [18], and AdaBoost [19]—all
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run using R 2.15.0. We used the radial basis kernel and regularization parameterC = 1 for SVM
(results for otherC values are in [6]), and decision trees as base classifiers forAdaBoost. The ORC
algorithm was implemented using ILOG AMPL 11.210 with the Gurobi solver.

Here we explain how we chose the parameter settings for the ORC experiments. In generating rules
with (5), we wanted to ensure thatRgenx was small enough that the solver would never choose to
decrease the scaled support

∑

i∈S xi just to decrease the scaled coverage
∑n

i=1 xi. That is,Rgenx
should be such that we would not sacrifice maximizings for lower sX ; this required only that this
parameter be a small positive constant, so we choseRgenx = 0.1

n
. Similarly, we did not want to

sacrifice maximizings or loweringsX for greater sparsity, so we choseRgenb = 0.1
nd

. In order to
not sacrifice classification accuracy for a shorter decisionlist in ranking the rules with (7), we chose
Rrank =

1
L

. We also usedmincov−1 = mincov1 = 0.05 anditer lim = 5.

Table 4 shows the average training and test classification accuracy for each dataset; corresponding
standard deviations are in [6]. Bold indicates the highest average in the row. Table 5 shows the
dataset sizes as well as average number of rules generated byRuleGen and average runtimes for
our algorithms (±one standard deviation); runtimes for the other methods were too small to be
a significant factor in assessment. Time1 is the total time for generating all rules; Time2 is the
time when the final solution for (7) was found, either before solving to optimality or before being
terminated after a specified time limit. We generally terminated the solver before (7) solved to
provable optimality. Note that often an MIO solver finds an optimum quickly but takes a much longer
time to prove optimality, thus terminating earlydoes not implythat we do not have an optimum.
These results show that in terms of accuracy, the ORC algorithm is on par with top classification
methods. The longer version of this paper [6] contains more information on all ORC experiments,
including accuracies and runtimes on each fold.

Table 4: Classification accuracy (averaged over three folds).
LR SVM CART C4.5 RF ADA ORC

B.Cancer train 0.9780 0.9846 0.9561 0.9671 0.9876 0.9693 0.9766
test 0.9502 0.9619 0.9488 0.9590 0.9575 0.9605 0.9532

CarEval train 0.9580 0.9821 0.9659 0.9907 0.9997 0.9959 0.9598
test 0.9485 0.9728 0.9618 0.9815 0.9826 0.9890 0.9508

Crime1 train 0.8427 0.8439 0.8380 0.8932 0.9918 0.8885 0.8897
test 0.7394 0.7394 0.7488 0.7465 0.7629 0.7723 0.7817

Crime2 train 0.6812 0.7477 0.6858 0.7409 0.8211 0.7156 0.7133
test 0.6722 0.6354 0.6171 0.5941 0.6239 0.6630 0.6699

Haberman train 0.7712 0.7876 0.7680 0.7745 0.7892 0.7712 0.7680
test 0.7582 0.7386 0.7418 0.7386 0.7386 0.7320 0.7582

Mammo train 0.8482 0.8687 0.8422 0.8596 0.8837 0.8560 0.8536
test 0.8374 0.8217 0.8301 0.8301 0.8289 0.8422 0.8337

MONK2 train 0.6470 0.6736 0.7500 0.9317 0.9907 0.7940 0.8299
test 0.6019 0.6713 0.6690 0.8866 0.6528 0.6389 0.7338

SPECT train 0.8783 0.8633 0.8390 0.8801 0.9363 0.8839 0.8970
test 0.7978 0.8464 0.7828 0.7940 0.8090 0.8052 0.7753

TicTacToe train 0.9833 0.9494 0.9348 0.9796 1.0000 0.9917 1.0000
test 0.9823 0.9165 0.8873 0.9259 0.9781 0.9770 1.0000

Titanic train 0.7783 0.7906 0.7862 0.7906 0.7906 0.7862 0.7906
test 0.7783 0.7847 0.7846 0.7906 0.7833 0.7797 0.7906

Votes train 0.9816 0.9747 0.9598 0.9724 0.9954 0.9701 0.9747
test 0.9586 0.9563 0.9540 0.9586 0.9586 0.9586 0.9563

Table 5: Number of transactions (n), number of items (d), average number of rules generated,
average time to generate all rules (Time1), average time to rank rules (Time2).

Dataset n d #Rules Time1 (sec) Time2 (sec)

B.Cancer 683 27 198.3 ± 16.2 616.3 ± 57.8 12959.3 ± 1341.9
CarEval 1728 21 58.0 706.3 ± 177.3 7335.3 ± 2083.7
Crime1 426 41 100.7 ± 15.3 496.0 ± 88.6 12364.0 ± 7100.6
Crime2 436 16 27.3 ± 2.9 59.3 ± 30.4 2546.0 ± 3450.6

Haberman 306 10 15.3 ± 0.6 14.7 ± 4.0 6.3 ± 2.3
Mammo 830 25 58.3 ± 1.2 670.7 ± 34.5 3753.3 ± 3229.5
MONK2 432 17 45.3 ± 4.0 124.0 ± 11.5 5314.3 ± 2873.9
SPECT 267 22 145.3 ± 7.2 71.7 ± 9.1 8862.0 ± 2292.2

TicTacToe 958 27 53.3 ± 3.1 1241.3 ± 38.1 4031.3 ± 3233.0
Titanic 2201 8 24.0 ± 1.0 92.0 ± 15.1 1491.0 ± 1088.0
Votes 435 16 266.0 ± 34.8 108.3 ± 5.0 21505.7 ± 1237.2
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Figure 4: CART classifier for Tic-Tac-Toe data.
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Figure 5: Ranked rules for Tic-Tac-Toe
data (with predicted class,̄s, ands̄X on
left side).

6 Interpretability

Interpretability is subjective, but in this section, we aimto demonstrate that the ORC classifier
performs well in terms of being easy to understand. Classifiers generated by CART and C4.5 are
interpretable because of their decision tree structure. Other methods are not as easily interpreted.
For example, the logistic regression model isp = 1

1+e−β0+βT t
, wherep is the probability that the

class of observationt is 1. The SVM model is a hyperplane that maximizes the margin between the
hyperplane and the closest point to it from both classes; by using kernels, we can raise the dimension
of the model and achieve high accuracy, but not interpretability. Though there is work devoted to
interpreting SVMs, the result is usually a smaller set of nonlinear features, still within a linear
combination [20]. AdaBoost combines weak classifiers—decision trees in our experiments—by
minimizing an exponential loss function; thus, even thoughthe base classifiers may be interpretable,
the final model is not necessarily as interpretable. Random Forests also combines trees.

We give an example using the Tic-Tac-Toe dataset from Section 5. Each point in this dataset rep-
resents a board configuration at the end of a Tic-Tac-Toe gamewhere player x played first, and the
task is to identify whether player x won. Each of the nine features in the data represents a square on
a Tic-Tac-Toe board. The possible values for each feature are: x, o, or blank. Figure 4 shows the
CART classifier from training on Folds 1 and 2, which achievesa test accuracy on Fold 3 of 88.1%
(average of 88.7% over all folds). The interpretation at theroot node is “If there is an ‘o’ in box 5,
then go left, otherwise go right,” and similarly for the other nodes. The 21 leaves of the CART tree
each predict whether the corresponding path implies a winning board configuration for ‘x’. The
C4.5 tree achieves a higher test accuracy of 92.8% on Fold 3 (average of 92.6% over all folds), but
is even larger with 36 leaves, and is thus less interpretable. The ORC classifier, shown in Figure 5,
turns out to just use nine rules. It decides the class of a board the same way a typical human would:
if the board has three x’s in a line, which can occur in eight different configurations, then player x
wins; otherwise, player x does not win. It achieves perfect training and test accuracy.

There are several additional examples of the interpretability of the ORC classifier in [6]. We show
that in general, ORC produces a consistently concise model compared with C4.5. The ORC models
tend to be larger than the CART trees, but are also more accurate.

7 Conclusion

Our computational experiments show that ORC competes well in terms of training and test accuracy
against the top classification algorithms on a variety of datasets. Since our paper is among the
first to use MIO methods for machine learning, and in particular to create decision lists using exact
approaches, it opens the door for further research on how to use optimization-based approaches
for rule mining, forming interpretable classifiers, and handling new forms of regularization. The
bottom line is that there is not necessarily a trade-off between accuracy and interpretability. It is
truly possible to have both.
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